
Z-DAG: An interactive DAG protocol for real-time crypto payments with Nakamoto
consensus security parameters

Jagdeep Sidhu, Msc.∗, Eliot Scott∗, Alexander Gabriel†
∗Syscoin Core Developers, Blockchain Foundry Inc.

Email: jsidhu@blockchainfoundry.co, escott@blockchainfoundry.co
†Lincoln Centre for Autonomous Systems (L-CAS), University of Lincoln, United Kingdom

Email: agabriel@lincoln.ac.uk

Abstract—Z-DAG stands for Zero Confirmation Directed
Acyclical Graph. A technology that allow for point-of-sale
with high degree of statistical probability of settlement in real-
time within an interactive protocol between a merchant and
consumer application.

1. Introduction

Z-DAG (Zero-Confirmation Directed Acyclic Graph) is
an instant settlement protocol that is used as a complemen-
tary system to proof-of-work (PoW) in the confirmation of
Syscoin [Sid] service transactions. In essence, a Z-DAG is
simply a directed acyclic graph (DAG) where validating
nodes verify the sequential ordering of transactions that
are received in their memory pools. Z-DAG is used by the
validating nodes across the network to ensure that there is
absolute consensus on the ordering of transactions and no
balances are overflowed (no double-spends).

1.0.1. Z-DAG. Z-DAG (Zero-Confirmation Directed
Acyclic Graph) is an instant settlement protocol functioning
across Syscoin Assets. An Asset ownership is proven
through a private key that matches each unique address
associated with the Asset. Z-DAG manages balances and
state of transactions in a deterministic fashion. This helps
protect against double spends where an Asset is transferred
falsely by creating multiple transactions through multiple
nodes within a short time.

1.0.2. DAG Settlement. What permits the instant settlement
of Z-DAG transactions is confidence that there is a high
probability of micro-transactions settling within a block than
there was with the real-time transaction being received by
each node by enforcing a interactive protocol whereby a
minimum latency is respected amongst sender and receiver
which permits high probability of miners seeing order of
events as they happened in real-time. Participants in a
transaction are able to agree upon settlements without block
confirmation because the network is able to anticipate what
transactions will be in the next block and how they will be
ordered with confidence. During the creation of a block,
the miner is tasked with constructing an ordered list of
transactions out of their memory pool which they sort by

time. Note that miners traditionally select the transactions
with highest paid fees out of the memory pool and this rule
does not change here, the additional ordering happens after
the transaction set is selected based on highest fees. The
time based sort has negligible processing requirements and
thus is no detriment to a miner and is done automatically
upon creation of a block. If a miner fails to do this they risk
their block not being validated by peers because the balances
may overflow if processing out of order. A strict validation
happens by every peer to ensure that no cases are allowed
where negative balances are accepted when processing a
block just like how standard Bitcoin balance checks are
done processing UTXOs. Successful miners write these lists
into new blocks, which then go on to be either accepted or
rejected by validating nodes across the network. The vali-
dating nodes use the transaction lists contained within these
blocks to validate that no balances are overflowed, which
they can cross-check to determine whether the network is
in a deterministic state or not. If the network is not in a
deterministic state, meaning that verifying nodes and miners
have conflicting results, then the conflicting transactions and
block will be rejected. If the validating nodes conclude that
they are in absolute consensus, the transactions within the
block are confirmed and added to state databases as normal.

At the beginning of a transaction a non-enforced 10
second delay is applied to subsequent transfers made by
the same asset holder. This delay is intended to create a
minimum latency, which eases the ordering of transactions
by time. If a user sends two transactions, with the second
being made 10 seconds after the first, then enough nodes
across the network should be able to determine which trans-
fer is the original. If transfers are made within this delay,
a conflict state is set, and the receiving node will reject the
transactions that do not adhere to the interactive protocol;
see figure 2. Any discrepancies between the real-time state
and PoW block will be resolved upon the confirmation of a
block, as PoW always rolls back to the previous state and
replays the correct order of events as seen by the miner.
By using this probabilistic approach Z-DAG transactions are
able to be settled in real-time with confidence and negligible
risk of double-spending over the minimum latency time. The
memory pool validation and network relay of transaction
messages is highly optimized through parallel execution and

Figure 1: This represents real-time ordering of transactions
as a linear ordering o = (v1,v2,. . .) of vertices in a DAG
such that if u and v are connected by an edge e, u comes
before v in o and e = (u → v). The balances are persisted

in real-time and managed to detect double-spends. At
Block 1001 the order is preserved by the miner and settled

by PoW.

will allows for a probabilistic scenario whereby the chance
of the miner not seeing transactions in the same order as the
majority of the network after the minimum latency period
is negligible.

1.0.3. PoW partition tolerance + DAG instant settle-
ments. In addition to facilitating fast transactions, Z-DAGs
also permit transactions to be settled upon a block without
sacrificing any of the security benefits gained by using PoW
as Syscoins primary method of consensus. The PoW is a
fallback and partition tolerance of the DAG operation as
every block a new DAG is constructed. If a receiver wishes
to (if its not a micro-transaction, but for a larger amount)
they may wish to simply wait for a minute/block for a

block confirmation or 6 minutes/blocks for a more abso-
lute confirmation. Typically, for token-based decentralized
networks to improve transaction speeds some type of a com-
prise of functionality must be made. Systems that take this
approach often choose to sacrifice decentralization and/or
reward systems; examples can be made of the consensus
protocols used by Ripple (XRP) [Dav] and Nano (NANO)
[LeM]. Syscoin’s solution retains decentralization, security,
and rewards miners who sustain the network.

1.1. Technical outline

Syscoin’s approach to settling transactions instanta-
neously shares similarities with an idea originally put for-
ward by the originator of Bitcoin, [Naka] Satoshi Nakamoto.
Satoshi argued in his/her response to the [Nakb] ”Bitcoin
Snack Machine” problem that the threat of a double-spend
is a race between a valid and malicious transaction to
propagate the most nodes across a network first. By creating
a delay between transactions, one transfer has an exponential
advantage over another in spreading across the network first.
Because of this, transactions are significantly easier to be
ordered in sequence which enables Z-DAG to be constructed
deterministically; this is an approach that other systems are
structurally incapable of replicating unless they are decen-
tralized systems with built-in rules for deterministic ordering
coded into their consensus models. This is the essence of
Z-DAG. See ”Related Works” section for further details on
other works and how they fall short of solving the problem
without centralization.

1.1.1. High level overview. The process of settling a Z-
DAG transaction can be broken down as follows. The ini-
tiating node begins the process by broadcasting that it has
sent some amount of a Syscoin Asset to another address.
In Bitcoin and in crypto-token related projects in general
all nodes who receive broadcasted transactions are tasked
with generally verifying before relaying. However Syscoin
optimized the verification procedure with a recourse model
that allows for relaying before verifying; See Algorithm 1
in Appendix A. Syscoin uses an optimized multi-threaded
parallel computing setup in the verification of signatures,
see figure 3 and the ”Multithreading and signature verifica-
tion” section. Once the transaction has reached the intended
recipient, the sale is completed with confidence as the mini-
mum latency period will have expired before the transaction
was received. The process is which the receiver verifies
the transaction is outlined in Algorithm 2 in Appendix A.
The sender allocation is checked against double-spends or
balance overflows by replaying the transaction through all
in-transit allocation transactions in the memory pool. Miners
order their queue of unconfirmed transactions by time and
include these into a new block which they compete to mine
onto the network. Once a miner succeeds in creating a block
they broadcast it to the network. The networks validating
nodes use the newly created blocks properties to determine
the validity of the transactions it contains; see Algorithm 3
in Appendix A about the consensus code verification.

Figure 3: Node A broadcasts to the network that it is
sending an amount an asset to node B. Once node B

receives notice of the transaction, the balance is
immediately realized in their wallet. Upon the mining of a

block, the transaction is confirmed across the network.
Upon block confirmation the state of the asset is reverted

to that of the previous block and the ordered block is
processed to arrive to a new balance. Notice that the

balance remains the same as the process of verifying a
block comes to the same conclusion to that of the

real-time balance.

1.2. Interactive Game

The protocol consensus is enforced by the receiver of
an asset transfer by calling the ”assetallocationsenderstatus”
function which ensures that the minimum latency was re-
spected for any transactions the sender made with assets, it
also flags a major error state in case of a detected double-
spend. If the sender was not following the protocol rules
the receiver may decide to not honor a point-of-sale and
either wait or reject their end of the deal. These rules are

not enforced by network consensus and thus may be opti-
mized later as network bandwidth and computing resources
become cheaper and more efficient.

When a valid transfer is made, the miners who receive
the broadcasted transaction include it in their queue of
unconfirmed transactions to be mined into a block. Although
the receiver of a transaction is able to realize their funds
immediately upon receiving notice of the transaction, the
transaction is not truly completed until a block has been
mined; prior to the mining of a block, the transaction is
simply settled with confidence that it will persist. Once a
block has been mined, the transaction is confirmed, and the
funds are finalized with confidence of PoW; see figure 4. In
fact it is just the tale of two confidence models, the Z-DAG
confidence model lies within the statistical probability that
the PoW ordering will match with some certainty and the
PoW confirmation allows for certainty that once confirmed
over X blocks it is statistically unlikely that they will be
rolled back. As a side note because of the confidence model
that doesn’t persist over blocks it is over a time domain the
fee market of such a model is also optimized to avoid cases
where exponential rises in fees happen because blocks are
full. Because in the Z-DAG confidence model you really
only care that a double-spend has not been detected and
that your transaction will eventually settle the fee one pays
for a Z-DAG transaction may be a lot less than a standard
one since one is not competing to get settled in the next
block. It is also important to note that the main use-case for
Z-DAG is for point-of-sale where a probabilistic settlement
occurs and buyers are allowed to walk away from a sale with
some type of fulfilled service without waiting for a block
settlement with both parties confident that the transaction is
accurate and complete.

1.3. Multithreading and parallel signature verifica-
tion

To improve the speed of newly broadcasted transactions
crossing the network, Syscoin uses a unique approach to the
verification of signatures and relaying of transactions. Nodes
are tasked with first relaying any incoming transactions
before verifying their signatures; see figure 5. Once a node
has relayed a new transaction, it then adds that transaction
to a thread-pool queue containing any other unchecked
transactions. The thread-pool is based off of a Bounded
MPMC Lock-free (no mutexes atomic RMW operations)
queue with 1 CAS per en-queue/de-queue operation based
off of the work by Dmitry Vyukov [Vyu]. By prioritizing the
relay of transactions over signature verification, the intended
recipient will receive notice of incoming funds exponentially
faster, enabling their new balance to be realized sooner.
Multithreading also greatly reduces the time that it takes
for signatures to be verified; see Algorithm 1 of Appendix
A on the mempool concurrent verification process.

1.3.1. Concurrent verification recourse policy. As a pre-
ventive measure against bad actors spreading invalid trans-
actions, Syscoin nodes are instructed to implement a simple

Figure 4: In the sequence diagram on the left, two nodes
attempt to transact funds from the same address. Because

the value of both transactions summed is within the
sending addresses balance, the transactions are permitted

to be confirmed over two blocks. In the sequence diagram
on the right, two nodes attempt to transact funds from the

same address, but one is rejected. After the first
transaction is confirmed and the balance belonging to the

sending address is reduced, the second transaction
becomes illegal and is labelled as a double-spend and

subsequently relayed to the rest of the network.

protocol upon encountering false signatures. When a node
detects that a transaction has been wrongly signed, it sets a
flag to return to single threaded mode for subsequent trans-
actions requesting to enter the memory pool. The node then
continues to parse through its remaining queue of unchecked
transactions in single threaded mode for 60 seconds and dis-
cards any wrongly signed transactions it encounters in that
time. Additionally, when a node is in single threaded mode
it reverses its usual order of operations and parses through
its queue of unchecked transactions before relaying them.
By using this simple protocol valid transactions are able
to propagate faster, while invalid transactions will be still
caught and discarded quickly; see Algorithm 1 of Appendix
A on the recourse policy of 60 seconds in context of the
rest of the memory pool verification.

Figure 5: Traditional blockchain networks require each
node to first check the signatures of incoming transactions
before relaying them; this blocking technique bottlenecks

broadcasting speed. The Z-DAG process as displayed
above immediately relays transactions before checking
signatures, resulting in significantly faster movement

across the network

2. Network transmission and processing

Now that we have described how we solved the problem
we can show the probabilities of detecting and process-
ing double-spends in the context of Syscoin’s masternode
network. The intuition is that since we have decoupled
verification from relaying we apply a statistical model to
arrive to a conclusion that a 10-second verification window
is sufficient for traditional commodity hardware to support
speeds commensurate of VISA/Masternode networks oper-
ating at peak throughput.

2.1. Transmission Path

The expected number of common peers between k
masternodes depends on the total number of Masternodes m
in the network and the number of peers p each masternode
has. The expected number of common peers is then:

E|cpk| = pk −
∑
m

E[Xi] = pk −mE[Xi] (1)

where Xi is 1 when Masternode i is a common peer and
0 otherwise. Since Masternodes pick their peers randomly
from the set of masternodes, this boils down to

E|cpk| = pk −m
(
1−

(
1− p

m

)k)
(2)

If we assume the total number of masternodes to be 1000,
the expected number of common peers between two master-
nodes is 0.625. What is the probability of that happening?

For a pair of masternodes, the probability of having exactly
n common peers is given by

p(|cp| = n) =

(
M
c

)(
M−c
p−c

)(
M−p
p−c

)
(
M
p

)2 . (3)

For 1000 masternodes with 25 peers each, this gives us
following probabilities:

p(|cp| = 1) = 0.3462 p(|cp| > 0) = 0.4731

p(|cp| = 2) = 0.1047 p(|cp| > 1) = 0.0220

p(|cp| = 3) = 0.0193 p(|cp| > 2) = 0.0027

p(|cp| = 4) = 0.0024 p(|cp| > 3) = 0.0002

Let’s play it safe and assume only 22 out of our 25
peers are unique. Then after two hops we can reach 484
masternodes and after 3 hops we can reach them all. For a
higher total count of masternodes, these odds improve.

A usual path through the network then has 5 steps, 3
within the mesh of masternodes, and two at its borders.

2.2. Transmission Delay

We collected a data set of masternode to masternode
and client to masternode 300 byte ICMP transmissions. This
data set contains 2086 samples, each of which is the average
transmission time of ten transmissions between two hosts.
To model the transmission delay of a single hop, we fit a
gamma distribution to this sample set.

Figure 1. Matching the gamma distribution to our sample set

This gives us with the two defining parameters of a
gamma distribution k and θ

k = 1.471680 θ = 0.077714.

To get an estimation of the transmission time from end
to end, we have to sum over 5 of our gamma distributions.
This leaves us with a new set of defining parameters

k = 7.358398 θ = 0.077714.

Now we can calculate the probability of the transmission
arriving in a given time, and vice-versa how much time
we have to wait to get the transmission with a desired
probability.

Figure 2. Probability of tx arrival after 5 hops over time

2.3. Network processing capacity

Since the receiver of a transaction is waiting 10 seconds
before he accepts a point-of-sale transaction and up to 2.3
seconds of these are taken up by a possible double-spend
transaction crossing the network, she has 7.7 seconds to
spare. This time can be used for the verification of other
signatures. Put another way, if a merchant has a backlog of
7.7s worth of signatures to verify, she can still detect the
double-spend transaction in time.

We ran tests of our new parallel signature verification
mechanism to create a sample set which we can use to
model the signature verification time. We use libsecp256k1
for ECDSA signature validation of transaction inputs en-
tering the mempool [Wui]. libsecp256k1 uses efficiently-
computable endomorphism to split the P multiplicand into
2 half-sized ones to give us a 30 percent speed boost. Bitcoin
has this disabled but is due to enable it in a future re-
lease. We have also enabled all hardware optimization’s. We
stuck with conventional hardware for typical throughput’s of
average off-the-shelf computing hardware found on cloud
providers which Masternodes are running on today (quad-
core CPUs with hyperthreading for 7 concurrent threads, 1
reserved for the executing thread). The numbers are rep-
resentative of what should be possible today with low-cost
hardware and not forward-looking which will be much more
favourable as the speeds and infrastructure surrounding the
networks grow organically.

1 core 4 cores, hyperthreading
µ 55.170 13.030
σ2 4.0890 2.2690

Using this model, we can find out how many signatures
the merchant can verify in the 7.7s that are left of the 10
second wait time.

293.3 thousand signatures verified in the ten second
window means the network has a maximum theoretical
throughput of 29.33 thousand transactions per second with
a 4-core receiver node. Each asset transaction can hold up

Figure 3. Probability of verifying signatures in 7.7s

to 250 receivers meaning effectively a maximum throughput
of roughly 733 thousand transactions per second assuming
a virtual transaction between a sender and receiver tuple. If
the merchant runs a faster machine, these numbers increase
significantly.

3. Related works

Syscoin’s method of consensus is fundamentally cen-
tered around Satoshi’s proof-of-work algorithm. The Z-DAG
protocol is an integral secondary layer of consensus that
serves the purpose of permitting transactions to be settled
before they are confirmed; Z-DAG cannot exclusively ensure
consensus alone. By simultaneously using a DAG and PoW,
Syscoins approach to solving the fast-transaction problem is
both efficient and unique. Many other decentralized services
make use of DAG based network structures entirely, and
even more continue to use PoW or PoS. Projects such as
IOTA [Pop] and NANO have created their own DAG based
protocols which largely forego the proven security of PoW
but in return gain the ability to process transactions in rapid
speeds. Many older services, namely Bitcoin and similar
projects forked from it, continue to use PoW for the sake
of security, but their users are frequently subjected to slow
and restrictive transaction times.

3.1. Related works comparison

As previously mentioned, IOTA and NANO are two
exemplary DAG based services that have created their
own unique methods of ensuring a decentralized consensus
amongst their networks node. It can be argued that NANO’s
approach was inspired by Satoshi’s proof-of-work as it is
used in ensuring the networks consensus. However, NANO’s
consensus is fundamentally attained through the use of their
DAG structure which they refer to as the ”block-lattice”.
Unlike Syscoin, nodes on the Nano network maintain their
own individual blockchains. Transactions are ordered by
their timestamps and are used to form directed acyclic
graphs. During a transaction, both the sender and receiver
produce their own blocks which reflect their respective
participation in a transaction, which they then broadcast to
the network. Both the sender and receiver also verify their
own transactions using PoW which eliminates the need for

designated miners on the network. To prevent foul play,
NANO employs PoS and a voting system to be used if any
transactions do not meet the networks required criteria.

IOTA’s approach to ensuring their networks consensus
does-away with traditional models almost entirely. IOTA
depends on a network shared main-DAG which they refer
to as the ”Tangle”. Within the tangle, transactions exist as
vertices and form long chains. When a transaction attempts
to join the tangle to be confirmed across the network it
must approve two others prior to it. Thus, by participating
in an IOTA transaction, the user is helping to speed up
the network. Consequently, and similarly to NANO, each
node can be viewed as their own miner. Harsh criticisms
have been made against IOTAs system, however, as it is
not entirely decentralized at present time. Right now, IOTA
is structurally vulnerable in its current maturity to what is
called a ”34 percent attack”. A ”34 percent attack” is much
like the ”51 percent attack” that threatens PoW systems,
but with a significantly greater vulnerability risk. While the
tangle grows overtime as transactions join the DAG, it’s
resilience against such an attack increase. As a temporary
remedy until the tangle reaches a certain maturity point,
IOTA has instated a centralized coordinator node (COO) to
prevent 34 percent attacks specifically.

Decentralized services that rely purely on PoW con-
sensus reap the benefit of its rigorously tested and proven
security but are bottle-necked by slow transaction times.
For transactions to be confirmed they must be included
in a block which are often mined far apart; in Bitcoin’s
case, once every 10 minutes. This mandatory time con-
straint makes exchanges unfeasible for many real-world
applications of cryptocurrency. Typically, the ordering of
transactions within a block is arbitrarily decided by the
miner. The only exception to this is that transactions have
to appear after any transactions upon which they depend.
This randomness makes it impossible for a block to be con-
fidently predicted; hence why Syscoin orders transactions
by their topological ordering before validating blocks. This
allows the real-time view of the transactions to mirror the
ordering within the block and this requires protocol support
which is lacking from Bitcoin and other PoW implemen-
tations. Thus technologies relying on such PoW chains to
do zero-confirmation settlements cannot fundamentally have
the same security properties than those that have protocol
support at the core layer.

Bitcoin-XT also implements a zero-confirmation settle-
ment scheme by relaying double-spending transactions and
having merchants detect the double-spends in real-time,
however it is susceptible to a delay attack as described by
[Ger] which can be effectively averted in Syscoin by having
merchant’s query randomly selected masternodes for their
responses to assetallocationsenderstatus.

Implementations that are not backed by PoW suffer
from partition tolerance issues. Inherently the trade off has
been made by DAG implementations based on performance
over consistency. A PoW chain will likely have greater
consistency over time and not end up having the issue of
coordinating DAG structures such as IOTA has. Implement-

ing a PoW + DAG in Syscoin meant using the PoW as a
reference for each DAG and thus no coordinate action is
required to maintain consistency in how the DAG is formed
or validated.

Syscoin’s protocol for Z-DAG poses no restrictions on
how receivers validate transactions, only that asstealloca-
tionsenderstatus is a reference implementation ensuring min-
imum latency between adjacent sender transactions is met as
well as ensuring that a double-spend has not been actively
detected for that sender. Users are free to implement their
own or even adjust the latency between acceptable real-time
transactions from 10 seconds to something less depending
on how network bandwidths increase to allow for faster
and faster propagation of transactions. In fact perhaps an
optimization can be done to dynamically adjust the latency
to optimally follow the rate at which the propagation is
happening on average. For example when the mempool is
relatively empty it would be relatively quick to propagate a
transaction across the network compared to if the mempool
was filling up at a rate where the verification mechanism
was the bottleneck. We leave this as an exercise for future
work.

3.2. Centralized services using Bitcoin

Another approach to solving what has been previously
referred to as the ’fast-transaction’ problem are application
level wrap-around solutions. Entities such as BitPay offer
blockchain billing services for businesses that are built on
top of cryptocurrencies; e.g. BitPay is built on top of Bitcoin.
BitPay’s model uses an invoice and crypto-to-fiat conversion
technique. BitPay invoices clients for a Bitcoin payment
which it then receives and converts back into fiat to return
to the business. Additionally, BitPay offers business and
clients the ability to choose a level of risk tolerance that
theyre willing to assume with their transactions. This risk-
mitigation system scales its levels of risk in accordance to
how many blocks have been mined on the Bitcoin network
since the transactions initiation. If a transaction requires a
minimal number of blocks to be mined before a payment is
confirmed it is at a greater-risk of fraud, and vice-versa if a
larger number of blocks are required.

4. Future Work

The work here can be improved to increase the statistical
probability of validation in the minimum latency period
through a variety of techniques. One method is to check
a random quorum of bonded validators for verification.

4.1. SPV Z-DAG

A simple payment verification method for Z-DAG is
possible by asking a random quorum at the receivers dis-
cretion for details regarding Z-DAG transactions in ques-
tion. By relying on a random quorum you can offload the
probability of invalid detection of double-spends from the

host node on a receiver to a set of nodes and likeliness of
gamesmanship of the random quorum selected. As can be
seen in the random quorum selection for the Instant Send
protocol [Duf], it is safe without a reasonable doubt to use
such a verification mechanism for point-of-sale applications
especially if the randomness is seeded by the receiver and
not by a deterministic seed which may be easier to take
advantage of.

This type of verification may be especially useful for
Point-Of-Sale terminals that are not running full nodes
but may reference end-points to a randomized quorum of
bonded validator full nodes to do the verification for them
for each transaction.

5. Conclusion

As can be seen by comparing Syscoin to related works,
the Z-DAG protocol is an elegant and efficient solution
to solving the aforementioned ’fast-transaction’ problem.
It offers users the ability to instantly settle transfers of
Syscoin services with negligible risk of fraud, and without
the involvement of any third party. Z-DAG transactions
do not require that merchants or customers take on any
additional steps to make fast-transactions on the Syscoin
network. By using Z-DAG, customers transactions can be
settled quickly and with the absolute security proven by
Bitcoin.

Acknowledgments

We would like to thank Satoshi Nakamoto and the
Bitcoin Core developers for their continued excellence in
software engineering, which has made it possible for others
to develop innovative products on top of their accomplish-
ments.

References

[Dav] Arthur Britto David Schwartz Noah Youngs. The
Ripple Protocol Consensus Algorithm. URL: https:
/ / ripple . com / files / ripple consensus whitepaper.
pdf.

[Duf] Evan Duffield. Dashpay. URL: https://github.com/
dashpay/dash/wiki/Whitepaper.

[Ger] Arthur Gervais. Tampering with the Delivery of
Blocks and Transactions in Bitcoin. URL: https :
/ / scalingbitcoin . org / papers / bitcoin - block -
transaction-delivery.pdf.

[LeM] Colin LeMahieu. Nano: A Feeless Distributed
Cryptocurrency Network. URL: https:/ /nano.org/
en/whitepaper.

[Naka] Satoshi Nakamoto. Bitcoin: A peer-to-Peer Elec-
tronic Cash. URL: https://bitcoin.org/bitcoin.pdf.

[Nakb] Satoshi Nakamoto. Bitcoin snack machine (fast
transaction problem). URL: https://bitcointalk.org/
index.php?topic=423.20.

[Pop] Serguei Popov. The Tangle. URL:
https : / / assets . ctfassets . net /
r1dr6vzfxhev / 2t4uxvsIqk0EUau6g2sw0g /
45eae33637ca92f85dd9f4a3a218e1ec / iota1 4 3 .
pdf.

[Sid] Jagdeep Sidhu. Syscoin 3.0: A Peer-to-Peer Elec-
tronic Cash System Built For Business Applica-
tions. URL: https : / / syscoin . org / Syscoin 3 .
0 Whitepaper Condensed.pdf.

[Vyu] Dmitry Vyukov. Bounded MPMC queue. URL:
http : / / www . 1024cores . net / home / lock - free -
algorithms/queues/bounded-mpmc-queue.

[Wui] Pieter Wuille. Optimized C library for EC oper-
ations on curve secp256k1. URL: https : / /github.
com/bitcoin-core/secp256k1.

6. Appendix A: Z-DAG protocol pseudocode

Algorithm 1: Mempool parallel verification and Z-DAG consensus in real-time
Result: Asset allocation balances will transfer in real-time as soon as the message is received across network

participants
1 Call assetallocationsend RPC;
2 Sign and send TX to network;
3 for each transaction received from peer do
4 Accept to memory pool;
5 if now() − nLastMultithreadMempoolFailure < 60 seconds then
6 set bMultiThreaded = false;
7 else
8 Preliminary input checks same as Bitcoin;
9 if bMultiThreaded == false then

10 for all inputs do
11 Do signature verification;
12 if If signature verification fails then
13 return false;
14 else

15 Add transaction to memory pool;
16 Relay transaction to network peers;
17 else
18 Add transaction to memory pool;
19 Relay transaction to network peers;
20 Add transaction to thread pool queue for signature verification;
21 Thread pool concurrently checks for signature validity;
22 if signature verification fails then
23 set nLastMultithreadMempoolFailure = now();
24 return;
25 else
26 Zero confirmation Syscoin consensus updates;
27 if update fails then
28 set nLastMultithreadMempoolFailure = now();
29 return;
30 else

Algorithm 2: Asset Allocation Sender Status RPC
Result: Check that a transaction received is indeed valid according to Z-DAG interactive protocol rules

1 set status = OK;
2 if sender was found in assetAllocationConflicts (double-spend detection buffer) then
3 set status = MAJORCONFLICT;
4 else
5 Order all in-transit asset allocations from sender in order by ascending time;
6 set mapBalances[sender] = sender balance from last PoW block (last known good state);
7 for all in-transit asset allocations do
8 set txRef = in-transit asset allocation fetched from mempool;
9 if txRef is invalid then

10 continue;
11 else
12 if time received of 2 adjacent transactions <= minimum latency (10 seconds) then
13 set status = MINORCONFLICT;
14 else
15 for all allocations sent in this transaction do
16 set senderBalance = senderBalance − sending amount;
17 set mapBalances[sender] = mapBalances[sender] − sending amount;
18 if senderBalance <= 0 then
19 set status = MINORCONFLICT;
20 else

21 return status;

Algorithm 3: Block Construction
Result: A Block is constructed out of transactions related to Syscoin and/or Syscoin assets

1 Craft block from transactions queued in the memory pool, ordered by highest fee first;
2 Order all in-transit asset allocations from sender in order by ascending time;
3 Test validity of Syscoin asset transactions in block;
4 if If block is invalid because transactions cause balance overflows then
5 remove invalid transactions from block and call Block Construction again;
6 else
7 Test validity of standard Syscoin block transactions;
8 Solve block PoW and relay block to the network;

